Feedback

X

Leave Comment

SERIES: Flowing Hair Half Dollars 1794-1795
LEVEL: Minor Variety or Die Variety

1795 50C Overton 131 (Regular Strike)

View All Coin Images

PCGS AU53
PCGS #:
39243
Diameter:
32.50 millimeters
Designer:
Robert Scot
Weight:
13.48 grams
Edge:
Lettered: FIFTY CENTS OR HALF A DOLLAR
Mintage:
299,680
Metal Content:
90% Silver, 10% Copper
Auction Record:
$43,125 • PCGS MS62 • 7-27-2002 • Heritage
Go To Grade
  • 2
  • 3
  • 4
  • 6
  • 8
  • 10
  • 12
  • 15
  • 20
  • 25
  • 30
  • 35
  • 40
  • 45
  • 45+
  • 50
  • 50+
  • 53
  • 53+
  • 55
  • 55+
  • 58
  • 62
  • 63
2
450
2
3
725
3
4
1,000
4
6
1,150
6
8
1,600
8
10
1,800
10
12
2,750
1
12
15
3,000
1
15
20
3,750
20
25
4,250
25
30
4,950
30
35
5,750
35
40
9,750
40
45
11,000
45
45+
13,000
45+
50
16,500
50
50+
18,000
50+
53
20,000
1
53
53+
20,500
53+
55+
24,500
55+
62
70,000
62
63
132,500
63
Condition Census (Explain) Show more rows
Pos Grade Thumbnail Pedigree and History
1 MS63 estimated grade  

James A. Stack, Sr. Collection - Stack's 10/1994:476, $34,100

2 MS62 PCGS grade  

Heritage 7/2002:8021, $43,125

3 AU58 PCGS grade  

Stack's 11/2007:2008, $34,500

4 AU55 PCGS grade  

James G. Macallister, sold privately on 3/8/1944 for $45 - Benson Collection - Goldbergs 2/2002:880, $19,550

5 AU53 PCGS grade

Stack's/Bowers 8/2013:4103, $22,913

Condition Census (Explain) Show fewer rows
Pos Grade Thumbnail Pedigree and History
1 MS63 estimated grade  

James A. Stack, Sr. Collection - Stack's 10/1994:476, $34,100

2 MS62 PCGS grade  

Heritage 7/2002:8021, $43,125

3 AU58 PCGS grade  

Stack's 11/2007:2008, $34,500

4 AU55 PCGS grade  

James G. Macallister, sold privately on 3/8/1944 for $45 - Benson Collection - Goldbergs 2/2002:880, $19,550

5 AU53 PCGS grade

Stack's/Bowers 8/2013:4103, $22,913

5 AU53 PCGS grade
5 AU53 estimated grade  

Aspen Collection - Heritage 7/2008:1664, $19,550

Don Willis: One of the most beautiful 1795 halves I have handled was the Benson O-131 in PCGS AU58. A gorgeously toned coin with a razor sharp strike. Well above Overton's condition census and the finest example of this variety that I know of.